Abstract
High and stable permeate flux can be obtained with shear-enhanced nanofiltration (NF) in model dairy wastewater treatment. In order to sustain such flux in long-term operation, critical fouling conditions should be studied and an optimum flux needs to be selected. Based on resistance-in-series and particle deposition models, a threshold flux was proposed to make a distinction between low and high fouling rates. At and below threshold flux, adsorption and reversible fouling are almost stable, and the fouling rate is low and nearly constant, irrespective of permeate flux; while above it, flux declines markedly with increasing flux mainly due to incremental reversible fouling. Flux remained quite stable with slight fouling ( 20% for undiluted milk). This threshold flux is determined by pressure stepping experiments as the point above which flux ceases to increase linearly with transmembrane pressure (TMP). Each flux step only needs to last a few minutes to ensure reversible fouling stabilization at high shear rate. In shear-enhanced filtration, these threshold fluxes are, of course, larger than critical ones, and more compatible with industrial expectations. It is concluded that the separation performance of membranes should be evaluated at or below threshold flux to eliminate the effect of fouling, and the effect of feed characteristic on membrane fouling should be investigated above threshold flux, while operating at threshold flux is recommended for industrial long-term operation. (C) 2012 Elsevier B.V. All rights reserved.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have