Abstract
The field of molecular electronics is a branch of science, which can have a variety of semiconductor technologies that extend beyond the silicon-based technology for the future. This branch of science may solve the limitations on size, high power usage and low speed in semiconductor technology. Rapid improvements in molecular electronics require modeling in the design of molecular devices. In this regard, we examine a three-leg molecule as a molecular transistor model and an indicator of methyl molecule as a resistance, in which the linkage of these abilities is carried out using LTspice simulation software. In order to investigate the effect of gated molecular on transport properties of the device, we design the half-adder molecular circuit and full-adder molecular circuit with them. The feasibility of building a prototype molecular transistor is illustrated using three-leg molecules directly contacted to gold electrodes, which the transmitted current from the structure is calculated using the Landauer formula. The application of the predicted results can be a base for designing moletronics devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have