Abstract
The present study is carried out to design oral controlled drug delivery systems for highly water-soluble drugs using guar gum as a carrier in the form of three-layer matrix tablets. Trimetazidine dihydrochloride was chosen as a model drug because of its high water solubility. Matrix tablet granules containing 30% (M1), 40% (M2) or 50% (M3) of guar gum were prepared by the wet granulation technique using starch paste as a binder. Three-layer matrix tablets of trimetazidine dihydrochloride were prepared by compressing on either side of guar gum matrix tablet granules of trimetazidine dihydrochloride M1, M2 or M3 with 200 mg of guar gum granules containing either 65% of guar gum (T1M1, T1M2 or T1M3), 75% of guar gum (T2M1, T2M2 or T2M3) or 85% of guar gum (T3M1, T3M2 or T3M3) as release retardant layers. The three-layer matrix tablets were evaluated for hardness, thickness, drug content uniformity, and were subjected to in vitro drug release studies. The amount of trimetazidine dihydrochloride released from the matrix and three-layer matrix tablets at different time intervals was estimated using a HPLC method. The three-layer guar gum matrix tablet (T3M3) provided the required release rate on par with the theoretical release rate for guar gum formulations meant for twice daily administration. The three-layer guar gum matrix tablet (T3M3) showed no change either in physical appearance, drug content or in dissolution pattern after storage at 40 °C/RH 75% for 6 months. The DSC study did not show any possibility of interaction between trimetazidine dihydrochloride and guar gum/other formulation excipients used in the study. The results indicated that guar gum, in the form of three-layer matrix tablets, is a potential carrier in the design of oral controlled drug delivery systems for highly water-soluble drugs such as trimetazidine dihydrochloride.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.