Abstract

The objective of the study is to design oral controlled drug delivery systems for highly water-soluble drugs using guar gum as a carrier in the form of a three-layer matrix tablet. Metoprolol tartrate was chosen as a model drug because of its high water solubility. Matrix tablets containing either 30 (M1), 40 (M2) or 50% (M3) of guar gum were prepared by wet granulation technique using starch paste as a binder. Three-layer matrix tablets of metoprolol tartrate were prepared by compressing on both sides of guar gum matrix tablet granules of metoprolol tartrate M1, M2 or M3 with either 50 (TL1M1, TL1M2 or TL1M3) or 75 mg (TL2M1, TL2M2 or TL2M3) of guar gum granules as release retardant layers. Both the matrix and three-layer matrix tablets were evaluated for hardness, thickness, drug content uniformity, and subjected to in vitro drug release studies. The amount of metoprolol tartrate released from the matrix and three-layer matrix tablets at different time intervals was estimated by using a HPLC method. Matrix tablets of metoprolol tartrate were unable to provide the required drug release rate. However, the three-layer guar gum matrix tablets (TL2M3) provided the required release rate on par with the theoretical release rate for metoprolol tartrate formulations meant for twice daily administration. The three-layer guar gum matrix tablet (TL2M3) showed no change either in physical appearance, drug content or in dissolution pattern after storage at 40 °C/75% RH for 6 months. The FT-IR study did not show any possibility of metoprolol tartrate/guar gum interaction with the formulation excipients used in the study. The results indicated that guar gum, in the form of three-layer matrix tablets, is a potential carrier in the design of oral controlled drug delivery systems for highly water-soluble drugs such as metoprolol tartrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call