Abstract

Slow, large-amplitude chain motions play an important role in determining the macroscopic mechanical properties of polymers. Although such motions have been studied quantitatively by two-dimensional (2D) nuclear magnetic resonance (NMR) exchange experiments, overlapping anisotropic patterns hamper spectral analysis, and limit applications. Variable angle correlation spectroscopy (VACSY) has proven useful in resolving such problems for rapidly spinning samples by separating anisotropic spectral patterns according to isotropic chemical shifts. In a previous study [J. Am. Chem. Soc. 115, 4825 (1993)], we described a three-dimensional (3D) NMR experiment that incorporates the VACSY method and a hop of the rotor axis to correlate the isotropic chemical shifts to 2D anisotropic exchange patterns. The hop of the rotor axis, however, presents experimental difficulties and limits the range of motional rates that may be studied. We present in this paper a new 3D VACSY exchange experiment that obtains the same correlations without the need for the rotor axis hop. A series of 2D exchange spectra are recorded with the sample spinning at different rotation axis angles. Then using the scaling of the anisotropic frequency at the different angles, we construct the data onto a 3D matrix so that a Fourier transformation directly yields the desired correlations. The technique is applied to 13C exchange NMR to study the slow molecular motion of ordered isotactic polypropylene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.