Abstract

BackgroundThe quantification of tricuspid regurgitation(TR) using three-dimensional(3D) proximal isovelocity surface area (PISA) derived effective regurgitant orifice area (EROA) is feasible in functional TR. The aim of our study was to explore the diagnostic accuracy and utility of 3D PISA EROA in a larger population of different etiologies.MethodsOne hundred and seven patients with confirmed TR underwent 2D and 3D transthoracic echocardiography (TTE). 3D PISA EROA was calculated and EROA derived from 3D regurgitant volume (Rvol) was used as the reference.Results3D PISA EROA showed better correlation in primary TR than in functional TR(r = 0.897, P < 0.01). 3D PISA EROA differentiated severe TR with comparable accuracy in patients with primary and functional etiology (Z-value 16.506 vs 21.202), but with different cut-offs (0.49cm2 vs. 0.41 cm2). The chi-square value for incorporated clinical symptoms, positive echocardiographic results and 3D PISA EROA to grade severe TR was higher than only included clinical symptoms or incorporated clinical symptoms and positive echocardiographic results (chi-square value 137.233, P < 0.01).ConclusionTR quantification using 3D PISA EROA is feasible and accurate under different etiologies. It has incremental diagnostic value for evaluating severe TR.

Highlights

  • The unfavorable effect of TR has been gradually recognized [1,2,3]

  • Population From March 2019 to May 2020, we prospectively reviewed 107 patients at the Cardiac Surgery Department, Zhongshan Hospital who met the following inclusion criteria: (1) presence of TR verified by 2D transthoracic echocardiography(TTE) at the Department of Echocardiography in our hospital, (2) plan of isolated tricuspid valve surgery or mitral valve surgery combined with tricuspid valve surgery in a week, and (3) presence of a recognizable proximal flow convergence region of the tricuspid valve in the four-chamber view

  • There were no significant differences in the following indicators: sex, age, weight, height, BSA, atrial fibrillation, TR jet location, right ventricular outflow tract (RVOT) Velocity-time integral (VTI), SRVOT and Stroke volume of RVOT (SVRVOT)

Read more

Summary

Introduction

The unfavorable effect of TR has been gradually recognized [1,2,3]. Previous studies have shown that the mortality caused by moderate or above TR is twice as high as that of mild or below TR [4]. Traditional quantitative methods such as vena contracta width(VCW) and two-dimensional (2D) proximal isovelocity surface area (PISA) method are insufficient to meet our needs [6]. The emergence of real-time three-dimensional(3D) echocardiography provides more possibilities in quantification of TR. Effective regurgitant orifice area (EROA) has close relationship with hemodynamic consequences [6, 7]. Using the advantages of 3D imaging, it can get rid of the geometric assumptions required by 2D PISA EROA and provide the real flow convergence [8]. The quantification of tricuspid regurgitation(TR) using three-dimensional(3D) proximal isovelocity surface area (PISA) derived effective regurgitant orifice area (EROA) is feasible in functional TR. The aim of our study was to explore the diagnostic accuracy and utility of 3D PISA EROA in a larger population of different etiologies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call