Abstract

In this paper, we present the dual boundary element method (dual-BEM) or single-domain BEM to analyze the mixed three-dimensional (3D) stress intensity factors (SIFs) in a finite and transversely isotropic solid containing an internal square crack. The planes of both the transverse isotropy and square crack can be oriented arbitrarily with respect to a fixed global coordinate system. A set of four special nine-node quadrilateral elements are utilized to approximate the crack front as well as the outer boundary, and the mixed 3D SIFs are evaluated using the asymptotic relation between the SIFs and the relative crack opening displacements (COD) via the Barnett–Lothe tensor. Numerical examples are presented for a cracked cuboid which is transversely isotropic with any given orientation and is under a uniform vertical traction on its top and bottom surfaces. The square crack is located in the center of the cuboid but is oriented arbitrarily. Our results show that among the selected material and crack orientations, the mode-I SIF reaches the largest possible value when the material inclined angle ψ 1=45° and dig angle β 1=45°, and the crack inclined angle ψ 2=0° and dig angle β 2=0°. It is further observed that when the crack is oriented vertically or nearly vertically, the mode-I SIF becomes negative, indicating that the crack closes due to an overall compressive loading normal to the crack surface. Variation of the SIFs for modes II and III along the crack fronts also shows some interesting features for different combinations of the material and crack orientations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.