Abstract

A 3D computational fluid dynamics model for describing the water flow and suspended solids (SS) concentration distribution in a rectangular sedimentation tank is presented. The interfacial momentum transfer, buoyant forces, and the effect of sediment-induced density currents are considered. A convection-diffusion equation, which is extended to incorporate the sedimentation of activated sludge in the field of gravity, governed the mass transfer in the clarifier. The double-exponential law is used to describe the dependence of the settling velocity on the concentration. The results show that during the dynamic settling process of the sludge, the mud surface rose slowly, and a period of time later, the mud surface kept stability and reached dynamic equilibrium in the tank. The distribution of velocity along the z axis in the rectangular tank is not uniform, and the surface return flow is found. The turbulent kinetic energy is larger and dropped drastically in the inlet zone, while in the settling zone the tu...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call