Abstract

The identification of the shape of the bubble trajectory is crucial for understanding the mechanism of bubble motion in liquid. In the paper it has been presented the technique of 3D bubble trajectory reconstruction using a single high speed camera and the system of mirrors. In the experiment a glass tank filled with distilled water was used. The nozzle through which the bubbles were generated was placed in the centre of the tank. The movement of the bubbles was recorded with a high speed camera, the Phantom v1610 at a 600 fps. The techniques of image analysis has been applied to determine the coordinates of mass centre of each bubble image. The 3D trajectory of bubble can be obtained by using triangulation methods. In the paper the measurement error of imaging computer tomography has been estimated. The maximum measurement error was equal to ±0,65 (mm). Trajectories of subsequently departing bubbles were visualized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call