Abstract
Metasurfaces and photonic crystals have revolutionized classical and quantum manipulation of light and opened the door to studying various optical singularities related to phases and polarization states. However, traditional nanophotonic devices lack reconfigurability, hindering the dynamic switching and optimization of optical singularities. This paper delves into the underexplored concept of tunable bilayer photonic crystals (BPhCs), which offer rich interlayer coupling effects. Utilizing silicon nitride-based BPhCs, we demonstrate tunable bidirectional and unidirectional polarization singularities, along with spatiotemporal phase singularities. Leveraging these tunable singularities, we achieve dynamic modulation of bound-state-in-continuum states, unidirectional guided resonances, and both longitudinal and transverse orbital angular momentum. Our work paves the way for multidimensional control over polarization and phase, inspiring new directions in ultrafast optics, optoelectronics, and quantum optics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.