Abstract

Graphene-based materials have been extensively investigated in the energy-related applications owing to their unique properties, such as high conductivity and mechanical flexibility. Three-dimensional (3D) graphene architectures could further strengthen their performance and facilitate the applications in energy storage. To fabricate 3D graphene architectures, the rapidly developed 3D printing technology presents a lot of advantages and has received much research attention. In this paper, we reviewed the recent research advances of 3D printing of graphene-based materials and discussed the applications in energy storage areas. The main 3D printing techniques applied in constructing graphene-based structures were summarized, and the characteristics of each method were briefly introduced. The current progresses of energy storage applications, focusing on supercapacitors and energy storage batteries, were reviewed in detail. Moreover, the future research challenges and prospects were provided in the last part, aiming at stimulating more significant research and industrial applications in this subject.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.