Abstract
Electrospinning has been widely used in fabrication of tissue engineering scaffolds. Currently, most of the electrospun nanofibers performed like a conventional two-dimensional (2D) membrane, which hindered their further applications. Moreover, the low production rate of the traditional needle-electrospinning (NE) also limited the commercialization. In this article, disc-electrospinning (DE) was utilized to fabricate a three-dimensional (3D) scaffold consisting of porous macro/nanoscale fibers. The morphology of the porous structure was investigated by scanning electron microscopy images, which showed irregular pores of nanoscale spreading on the surface of DE polycaprolactone (PCL) fibers. Protein adsorption assessment illustrated the porous structure could significantly enhance proteins pickup, which was 55% higher than that of solid fiber scaffolds. Fibroblasts were cultured on the scaffold. The results demonstrated that DE fiber scaffold could enhance initial cell attachment. In the 7 days of culture, fibroblasts grew faster on DE fiber scaffold in comparison with solid fiber, solvent cast (SC) film and TCP. Fibroblasts on DE fibers showed a stretched shape and integrated with the porous surface tightly. Cells were also found to migrate into the DE scaffold up to 800μm. Results supported the use of DE PCL fibers as a 3D tissue engineering scaffold in soft tissue regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.