Abstract

Surface acoustic wave (SAW) devices form an important class of acoustofluidic devices, in which the acoustic waves are generated and propagate along the surface of a piezoelectric substrate. Despite their wide-spread use, only a few fully three-dimensional (3D) numerical simulations have been presented in the literature. In this paper, we present a 3D numerical simulation taking into account the electromechanical fields of the piezoelectric SAW device, the acoustic displacement field in the attached elastic material, in which the liquid-filled microchannel is embedded, the acoustic fields inside the microchannel, as well as the resulting acoustic radiation force and streaming-induced drag force acting on micro- and nanoparticles suspended in the microchannel. A specific device design is presented, for which the numerical predictions of the acoustic resonances and the acoustophoretic repsonse of suspended microparticles in 3D are successfully compared with experimental observations. The simulation provides a physical explanation of the the observed qualitative difference between devices with an acoustically soft and hard lid in terms of traveling and standing waves, respectively. The simulations also correctly predict the existence and position of the observed in-plane streaming flow rolls. The presented simulation model may be useful in the development of SAW devices optimized for various acoustofluidic tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.