Abstract

Sandwich panels with auxetic lattice cores confined between metallic facets are proposed for localised impact resistance applications. Their performance under localised impact is numerically studied, considering the rate-dependent effects. The behaviour of the composite structure material at high strain rates is modelled with the Johnson-Cook model. Parametric analyses are conducted to assess the performance of different designs of the hybrid composite structures. The results are compared with monolithic panels of equivalent areal mass and material in terms of deformations and plastic energy dissipation. Design parameters considered for the parametric analyses include the auxetic unit cell effective Poisson’s ratio, thickness of the facet, material properties and radius of the unit cell’s struts. Significant reduction in computational time is achieved by modelling a quarter of the panel, with shell elements for facets and beam elements for the auxetic core. With projectile impacts up to 200 m/s, the auxetic composite panels are found to be able to absorb a similar amount of energy through plastic deformation, while the maximum back facet displacements are reduced up to 56% due to localised densification and plastic deformation of the auxetic core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.