Abstract

Results of the study of symmetrical facing wrinkling of compressed rectangular composite sandwich plates with orthotropic faces and core are presented in the paper. Two parallel edges of the plate facings are simply supported, one edge is clamped, and another edge is free (SSCF). The wrinkling problem is solved using the Ritz method in which the total energy functional of plate faces and core is obtained based on the original model, considering nonlinear variation of the transverse displacement of the core material from the value of facing’s deflection to zero. Application of the Ritz method yields formulas for the calculation of critical compressive load. The critical load is found using a minimization with respect to the parameter of the wrinkling waves evolution and the parameter characterizing the rate of fading of the transverse displacement. Based on the derived formulas, the effects of facing and core thicknesses, and modulus elasticity of core material on the critical wrinkling load are studied. The results of calculations are verified using a finite element analysis. It is shown that the value of critical load calculated based on the proposed model is more accurate compared to that calculated using the Winkler-Pasternak model, particularly for the sandwich plates with thin faces and thick core.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call