Abstract
Study of the saturated‐unsaturated flow in porous media is of interest in many branches of science and engineering. Among the various numerical simulation methods available, the finite difference method is advantageous because it offers simplicity of discretization. This method has been widely used for simulating saturated‐unsaturated flows. However, the simulation of geometrically complex flow domains requires the use of high‐resolution grids in conventional finite difference models because conventional finite difference discretization assumes an orthogonal coordinate system. This makes a finite difference model computationally less efficient than other numerical models that can treat nonorthogonal grids, such as the finite element model and finite volume model. To overcome this disadvantage, we use a coordinate transformation method and develop a multidimensional finite difference model for simulating saturated‐unsaturated flows; this model can treat nonorthogonal grids. The cross‐derivative terms derived by the coordinate transformation method are evaluated explicitly for ease of coding. Therefore, a 7 point stencil is used for implicit terms in the iterative calculation, as in the case of conventional finite difference models with an orthogonal grid. We assess the performance of the proposed model by carrying out test simulations. We then compare the simulation results with dense grid solutions in order to evaluate the numerical accuracy of the proposed model. To examine the performance of the proposed model, we draw a comparison between the simulation results obtained using the proposed model and the results obtained by using (1) a model in which all terms are considered fully implicitly, (2) a finite element model, and (3) a conventional finite difference model with a high‐resolution orthogonal grid.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have