Abstract

The global muscle and collagen fiber orientation in the human uterus has been analyzed hitherto by various standard microscopic techniques. However, no widely accepted model of the fiber architecture of the myometrium could be acquired. The purpose of the present study was to investigate the uterus by magnetic resonance (MR) diffusion tensor imaging (DTI) in a 3D macroscopic approach. Ex vivo MR DTI measurements were performed on five uteri from nonpregnant patients. The main diffusion directions reflecting the orientation of directional structures in the examined tissues were determined from diffusion-weighted spin-echo measurements. A fiber tracking algorithm was used to extrapolate the fiber architecture. The method was validated against histological slides and indirectly through the analysis of leiomyomas, which exhibit less anisotropy than normal myometrium. Significant anisotropy was found in most regions of all examined nonpregnant human uteri. But only two systems of fibers were found running circularly along the intramural part of the uterine tubes. They merged caudally and built a close fitting envelope of circular layers around the uterine cavity. On the cervix, circular fibers were observed in the outer part as well as mostly longitudinal fibers in the inner part. These results confirm the existence of directional structures in the complex fiber architecture of the human uterus. They also indicate that MR DTI is a beneficial and complementary tool to standard microscopic techniques to determine the intrinsic fiber architecture in human organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.