Abstract

The intestinal epithelium regenerates every 5-7 days, and is controlled by the intestinal epithelial stem cell (IESC) population located at the bottom of the crypt region. IESCs include active stem cells, which self-renew and differentiate into various epithelial cell types, and quiescent stem cells, which serve as the reserve stem cells in the case of injury. Regeneration of the intestinal epithelium is controlled by the self-renewing and differentiating capabilities of these active IESCs. In addition, the balance of the crypt stem cell population and maintenance of the stem cell niche are essential for intestinal regeneration. Organoid culture is an important and attractive approach to studying proteins, signaling molecules, and environmental cues that regulate stem cell survival and functions. This model is less expensive, less time-consuming, and more manipulatable than animal models. Organoids also mimic the tissue microenvironment, providing in vivo relevance. The present protocol describes the isolation of colonic crypts, embedding these isolated crypt cells into a three-dimensional gel matrix system and culturing crypt cells to form colonic organoids capable of self-organization, proliferation, self-renewal, and differentiation. This model allows one to manipulate the environment-knocking out specific proteins such as claudin-7, activating/deactivating signaling pathways, etc.-to study how these effects influence the functioning of colonic stem cells. Specifically, the role of tight junction protein claudin-7 in colonic stem cell function was examined. Claudin-7 is vital for maintaining intestinal homeostasis and barrier function and integrity. Knockout of claudin-7 in mice induces an inflammatory bowel disease-like phenotype exhibiting intestinal inflammation, epithelial hyperplasia, weight loss, mucosal ulcerations, epithelial cell sloughing, and adenomas. Previously, it was reported that claudin-7 is required for intestinal epithelial stem cell functions in the small intestine. In this protocol, a colonic organoid culture system is established to study the role of claudin-7 in the large intestine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call