Abstract
Three-dimensional imaging with single orientation is a potential and novel technique. We successfully demonstrate that three-dimensional (3D) structure can be determined by a single orientation diffraction measurement for a phase object of double-layer Mie-scattering silica spheres on a Si3N4 membrane. Coherent diffraction pattern at high numerical aperture was acquired with an optical laser, and the oversampled pattern was projected from a planar detector onto the Ewald sphere. The double-layered spheres are reconstructed from the spherical diffraction pattern and a 2D curvature-corrected pattern, which improve convergence speed and stability of reconstruction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have