Abstract
By using the mathematical formalism of absolute and convective instabilities, we study in this work the nature of unstable three-dimensional localized disturbances at the onset of convection in a flow in a saturated homogeneous porous medium with inclined temperature gradient and vertical throughflow. It is shown that for marginally supercritical values of the vertical Rayleigh numberRvthe destabilization has the character of absolute instability in all the cases in which the horizontal Rayleigh numberRhis zero or the Péclet numberQvis zero. In all the cases in whichRhandQvare both different from zero, at the onset of convection the instability is convective. In the latter cases, the growing emerging disturbance has locally the structure of a non-oscillatory longitudinal roll, and its group velocity points in the direction opposite the direction of the applied horizontal temperature gradient, i.e. parallel to the axis of the roll. The speed of propagation of the unstable wavepacket increases withQvand generally increases withRh.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.