Abstract

Sensors were of paramount importance in the context of poultry and livestock farming, serving as essential tools for monitoring a variety of production management parameters. The effective surveillance and optimal control of the swine facility environment critically depend on the implementation of a robust strategy for situating the optimal number of sensors in precisely the right locations. This study presents a dynamic sensor placement approach for pigsties using the three-way k-means algorithm. The method involves determining candidate sensor combinations through the application of the k-means algorithm and a re-clustering strategy. The optimal sensor locations were then identified using the Joint Entropy-Based Method (JEBM). This approach adjusts sensor positions based on different seasons (summer and winter) to effectively monitor the overall environment of the pigsty. We employ two clustering models, one based on particle swarm optimization and the other on genetic algorithms, along with a re-clustering strategy to identify candidate sensor combinations. The joint entropy-based method (JEBM) helps select the optimal sensor placement. Fused data from the optimal sensor layout undergo a fuzzy fusion process, reducing errors compared to direct averaging. The results show varying sensor needs across seasons, and dynamic placement enhances pigsty environment monitoring. Our approach reduced the number of sensors from 30 to 5 (in summer) and 6 (in winter). The optimal sensor positions for both seasons were integrated. Comparing the selected sensor layout to the average of all sensor readings representing the overall pigsty environment, the RMSE were 0.227–0.294 and the MAPE were 0.172–0.228, respectively, demonstrating the effectiveness of the sensor layout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.