Abstract

Previous work has shown that the study of host immune responses against Mycobacterium tuberculosis, the causative agent of tuberculosis, requires the availability of multiple mycobacterial antigens. Since purification of protein from M. tuberculosis cells is extremely cumbersome, we developed a protocol for purifying milligram amounts of ten recombinant antigens of M. tuberculosis from E. coli cells. Purified proteins were immunologically active and free of contaminants that confound interpretation of cell-based immunological assays. The method utilizes a three-step purification protocol consisting of immobilized metal-chelate affinity chromatography, size exclusion chromatography and anion-exchange chromatography. The first two chromatographic steps yielded recombinant protein free of protein contaminants, while the third step (anion-exchange chromatography) efficiently removed E. coli lipopolysaccharide, a potent polyclonal activator of lymphoid cells. The recombinant proteins were immunologically indistinguishable from their native (i.e., purified from M. tuberculosis) counterparts. Thus the method provides a way to utilize recombinant proteins for immunological analyses that require highly purified antigens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.