Abstract

The three-step model (TSM) of high-harmonic generation (HHG) is generalized to atomic and molecular many-electron systems. Using many-body perturbation theory, corrections to the standard TSM due to exchange and electron-electron correlations are derived. It is shown that canonical Hartree-Fock orbitals represent the most appropriate set of one-electron states for calculating the HHG spectrum. To zeroth order in many-body perturbation theory, a HHG experiment allows direct access, in general, to a combination of occupied Hartree-Fock orbitals rather than to the highest occupied molecular orbital by itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.