Abstract

Hybrid ferroelastic crystals have emerged as a hot research topic in recent years owing to their prospective applications in piezoelectric sensors, mechanical switches, and optoelectronic devices. Nevertheless, most of the documented materials exhibit one-step or two-step ferroelastic phase transition(s), and those with multistep ferroelastic transitions are extremely scarce. We present a new hexagonal molecular perovskite based on a fluoro-substituted flexible cyclic ammonium cation, (1-fluoromethyl-1-methylpyrrolidine)[CdCl3] (1), undergoing unusual three-step ferroelastic phase transitions from hexagonal paraelastic phase to orthorhombic, monoclinic, and triclinic ferroelastic phases at 388, 376, and 311 K, respectively, with Aizu notation of 6/mmmFmmm, mmmF2/m, and 2/mF-1, featuring spontaneous strain of 0.002, 0.023, and 0.110, respectively. Furthermore, variable-temperature single-crystal diffraction reveals that the phase-transition mechanism in 1 principally originates from intriguing dynamic change of organic cations and synchronous displacement of inorganic chains. This scarce instance of multistep hybrid ferroelastic provides important clues for finding advanced ferroelastic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call