Abstract
A theorem due to G. D. Birkhoff states that every essential curve which is invariant under a symplectic twist map of the annulus is the graph of a Lipschitz map. We prove: if the graph of a Lipschitz map h:T→R is invariant under a symplectic twist map, then h is a little bit more regular than simply Lipschitz (Theorem 1); we deduce that there exists a Lipschitz map h:T→R whose graph is invariant under no symplectic twist map (Corollary 2). Assuming that the dynamic of a twist map restricted to a Lipschitz graph is bi-Lipschitz conjugate to a rotation, we obtain that the graph is even C 1 (Theorem 3). Then we consider the case of the C 0 integrable symplectic twist maps and we prove that for such a map, there exists a dense G δ subset of the set of its invariant curves such that every curve of this G δ subset is C 1 (Theorem 4).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.