Abstract

A series of three-dimensional coordination polymers, namely, [Cd(BIMB)(SCA)]n (1), [M(BIMB)(trans-CHDC)]n (2, M = Cd2+; 3, M = Co2+), where BIMB = 1,4-di(1H-imidazol-1-yl)benzene, SCA2− = succinate dianion, CHDC2− = cyclohexane-1,4-dicarboxylate dianion) are synthesized hydro/solvatothermal methods. The products are characterized by elemental analysis and single–crystal X-ray diffraction data. Both the dianion and BIMB bridge different pairs of the metal ions, the three complexes are polymeric and their three-dimensional topology feature a diamond-like metal–organic framework (MOF). Owing to the length of the two bridging ligands, moderate size voids are formed in the diamondoid networks. However, the voids are filled by mutual interpenetration of four independent equivalent frameworks in a 5-fold interpenetrating architecture, and there is no sufficient void volume available for any guest molecules. The phase purity and thermal stability of the compounds are verified by powder X–ray diffraction (PXRD) and thermogravimetric (TG) data. The solid–state fluorescence spectra for the 3d10 Cd2+ MOF's 1 and 2 reveal significant enhancement in their emission intensities in comparison to the non-metallated BIMB. The enhanced emission is attributed to perturbation of intra-ligand emission states due to Cd2+ coordination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.