Abstract

A three-layered Ag-low-permittivity (LP)-high-permittivity (HP) nanoshell is proposed as a plausible meta-atom for building the three-dimensional isotropic negative refractive index metamaterials (NIMs). The overlap between the electric and magnetic responses of Ag-LP-HP nanoshell can be realized by designing the geometry of the particle, which can lead to the negative electric and magnetic polarizabilities. Then, the negative refractive index is found in the random arrangement of Ag-LP-HP nanoshells. Especially, the modulation of the middle LP layer can move the negative refractive index range into the visible region. Because the responses arise from the each meta-atom, the metamaterial is intrinsically isotropic and polarization independent. It is further found with the increase of the LP layer thickness that the negative refractive index range of the random arrangement shows a large blue-shift and becomes narrow. With the decrease of the filling fraction, the negative refractive index range shows a blue-shift and becomes narrow while the maximum of the negative refractive index decreases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call