Abstract

Affected by the height dependent effects, the phase-shifting shadow moiré can only be implemented in an approximate way. In the technique, a fixed phase step around π/2 rad between two adjacent frames is usually introduced by a grating translation in its own plane. So the method is not flexible in some situations. Additionally, because the shadow moiré fringes have a complex intensity distribution, computing the introduced phase shift from the existing arccosine function or arcsine function-based phase shift extraction algorithm always exhibits instability. To solve it, we developed a Gram-Schmidt orthonormalization approach based on a three-frame self-calibration phase-shifting algorithm with equal but unknown phase steps. The proposed method using the arctangent function is fast and can be implemented robustly in many applications. We also do optical experiments to demonstrate the correction of the proposed method by referring to the result of the conventional five-step phase-shifting shadow moiré. The results show the correctness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.