Abstract

We present a phase shifting robust method for irregular and unknown phase steps. The method is formulated as the minimization of a half-quadratic (robust) regularized cost function for simultaneously computing phase maps and arbitrary phase shifts. The convergence to, at least, a local minimum is guaranteed. The algorithm can be understood as a phase refinement strategy that uses as initial guess a coarsely computed phase and coarsely estimated phase shifts. Such a coarse phase is assumed to be corrupted with artifacts produced by the use of a phase shifting algorithm but with imprecise phase steps. The refinement is achieved by iterating alternated minimization of the cost function for computing the phase map correction, an outliers rejection map and the phase shifts correction, respectively. The method performance is demonstrated by comparison with standard filtering and arbitrary phase steps detecting algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.