Abstract

Silicon nanopillars, fabricated by electron beam lithography and reactive ion etching, were size-reduced using laser-assisted electrochemical etching in a dilute hydrofluoric acid solution. The progressing size reduction was followed by scanning electron microscopy down to final diameters of ∼15 nm. By varying the voltage bias, it was found that etching could be directed primarily at the pillar top (7 V) or at the pillar base (−0.6 V) whereas in an intermediate regime, conformal etching could be obtained. From the rate of volume change during etching, it was concluded that holes, participating in the dissolution reaction, were primarily generated within the pillar volume. The corresponding effective dissolution valence was ∼5–9, indicating substantial recombination losses within the pillar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.