Abstract
Plants are considered as a possible modality to reduce particulate matter (PM) particles from ambient air in an ecofriendly manner. A new precise monitoring technique that can explore interactions between individual PM particles and a leaf surface is necessary to understand the underlying mechanisms of PM removal of plant leaves. In this study, a digital in-line holographic microscopy (DIHM) was employed to experimentally investigate the settling motions of PM particles over the leaf surface. The in-plane positions and sizes of opaque PMs with irregular shapes were obtained from the projection images of numerically reconstructed holographic images. The depth positions of PMs were determined by using proper selection of an autofocusing criterion with automatic segmentation method. The edge of a hairy Perilla frutescens leaf was detected by adopting several digital imaging processing techniques. The DIHM technique was applied in this study to accurately detect 3D settling trajectories of PMs with velocity information of PMs in the midair and near leaf surface, simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.