Abstract

Ice crystal icing occurs in jet engine compressors, which can severely degrade jet engine performance. In this study, we developed an ice crystal trajectory simulation, considering the state changes of ice crystals with a forced convection model, indicating a significant difference in impinging ice crystal content on the blade for tiny ice crystals. Then, ice crystal trajectory simulations were performed for the rotor blade of an axial fan to investigate the effects of ice crystal size and relative humidity on collision characteristics. The results indicate that the surrounding air affects the composition of tiny ice crystals before collision, and the flight time until impingement on the rotor blade varies significantly depending on the span position. Among them, ice crystals with a diameter of 50 μm impinge with water content that is most likely to adhere to the blade. Three-dimensional simulation results show that many ice crystals impinge not only on the leading edge, where icing occurs as revealed by the two-dimensional simulations but also on the trailing edge of the hub side. This study emphasizes the importance of evaluating the three-dimensional impingement position and water content in the prediction of ice crystal icing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.