Abstract
Ultrasound is notoriously plagued by high user dependence. There is a steep drop-off in information in going from what the sonographer sees during image acquisition and what the interpreting radiologist is able to view at the reading station. One countermeasure is probe localization and tracking. Current implementations are too difficult and expensive to use and/or do not provide adequate detail and perspective. The aim of this work was to demonstrate that a protocol combining surface three-dimensional photographic imaging with traditional ultrasound images may be a solution to the problem of probe localization, this approach being termed surface point cloud ultrasound (SPC-US). Ultrasound images were obtained of major vessels in an ultrasound training phantom, while simultaneously obtaining surface point cloud (SPC) 3D photographic images, with additional scanning performed on the right forearm soft tissues, kidneys, chest, and pelvis. The resulting sets of grayscale/color Doppler ultrasound and SPC images are juxtaposed and displayed for interpretation in a manner analogous to current text-based annotation or computer-generated stick figure probe position illustrations. Clearly demonstrated is that SPC-US better communicates information of probe position and orientation. Overall, it is shown that SPC-US provides much richer image representations of probe position on the patients than the current prevailing schemes. SPC-US turns out to be a rather general technique with many anticipated future applications, though only a few sample applications are illustrated in the present work.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have