Abstract

The potential theory method is utilized to derive the steady-state, general solution for three-dimensional (3D) transversely isotropic, hygrothermopiezoelectric media in the present paper. Two displacement functions are introduced to simplify the governing equations. Employing the differential operator theory and superposition principle, all physical quantities can be expressed in terms of two functions, one satisfies a quasi-harmonic equation and the other satisfies a tenth-order partial differential equation. The obtained general solutions are in a very simple form and convenient to use in boundary value problems. As one example, the 3D fundamental solutions are presented for a steady point moisture source combined with a steady point heat source in the interior of an infinite, transversely isotropic, hygrothermopiezoelectric body. As another example, a flat crack embedded in an infinite, hygrothermopiezoelectric medium is investigated subjected to symmetric mechanical, electric, moisture and temperature loads on the crack faces. Specifically, for a penny-shaped crack under uniform combined loads, complete and exact solutions are given in terms of elementary functions, which serve as a benchmark for different kinds of numerical codes and approximate solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call