Abstract

AbstractThe present work aims to investigate the failure size effect on flattened disks containing an eccentric circular hole under mode I loading conditions. For this purpose, uniaxial compression tests are carried out on polymethyl methacrylate (PMMA) samples with holes. Depending on the hole radius and eccentricity, the energy release rate is either an increasing or decreasing function of the crack length, thus affecting the stability of crack propagation. Experimental results are interpreted and discussed through the coupled stress and energy criterion of Finite Fracture Mechanics. The approach lies on the assumption of a finite crack advance and it is implemented through the numerical estimation of the stress field and the Incremental Energy Release Rate functions. Finally, stability and crack speed propagation are discussed under the assumption of Linear Elastic Fracture Mechanics. Theoretical predictions reveal in agreement with experimental results thus demonstrating that the Coupled Criterion effectively captures the failure condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.