Abstract

A three-dimensional simulation methodology allowing statistical study of the direct tunnelling gate current fluctuations in realistic nano-scale metal–oxide–semiconductor field effect transistors (MOSFETs) is presented. The approach has been applied to study the gate leakage fluctuations due to the combined effect of oxide thickness variation (OTV) and discrete random dopants (RD) in an example 25 nm gate length MOSFET. OTV is the primary source of gate leakage fluctuations at high gate voltage, while RD are the main factor at high drain voltage. Both OTV and RD contribute to an average increase in the magnitude of the gate leakage with respect to that of a uniform device. This reflects the exponential sensitivity of the direct tunnelling current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.