Abstract

In this paper, we review and extend recent work on the effect of random discrete dopants on the statistical variability in gate-all-around silicon nanowire transistors. The electron transport is described using the nonequilibrium Green's function formalism. Full 3-D real-space and coupled-mode-space repre sentations are used. Two different cross sections (i.e., 2.2 × 2.2 and 4.2 × 4.2 nm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) and two different channel lengths (i.e., 6 and 12 nm) have been considered. The resistivity associated with discrete dopants can be estimated from the averaged current-voltage characteristics. The threshold-voltage variability and the sub threshold-slope variability are reduced greatly in the transistors with longer channel length. Both are smaller at equivalent channel lengths in the 2.2 × 2.2 nm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> device due to better electrostatic integrity. At the same time, the ON-state-current variability associated with the varying resistance of the access regions is virtually independent of the channel length. However, it is reduced greatly in the 4.2 × 4.2 nm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> transistor due to a fourfold increase in the number of dopants in the access regions and corresponding self-averaging effects. Finally, we present results for the smallest transistor combining two sources of variability (i.e., discrete random dopants and surface roughness) and phonon scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call