Abstract
The properties of spontaneous reconnection of a current sheet analyzed via direct three-dimensional simulations are presented. In particular the non-linear dynamics of resistive instabilities has been studied in absence or in presence of velocity shears. It is shown that full three-dimensional simulations allow the inclusion of a rich variety of (ideal) secondary instabilities which, depending on the initial equilibrium magnetic field configuration, determine the final fate of the system in the fully non linear regime. In particular in presence of a guide-field the dynamic is similar to what observed in two-dimensional simulations with energy driven toward both smaller and larger scales and energy spectra anisotropy. For different magnetic field configurations, the final state is characterized by the disruption of the coalesced structure created during the resistive phase and the system is characterized by a more chaotic state. A discussion on the importance of high-order numerical techniques in numerical simulations of magnetic reconnection is also present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.