Abstract

Observations indicate that Ellerman bombs (EBs) and chromospheric microflares both occur in the lower solar atmosphere, and share many common features, such as temperature enhancements, accompanying jet-like mass motions, short lifetime, and so on. These strongly suggest that EBs and chromospheric microflares could both probably be induced by magnetic reconnection in the lower solar atmosphere. With gravity, ionization and radiation considered, we perform two-dimensional numerical simulations of magnetic reconnection in the lower solar atmosphere. The influence of different parameters, such as intensity of the magnetic field and anomalous resistivity, on the results are investigated. Our result demonstrates that the temperature increases are mainly due to the joule dissipation caused by magnetic reconnection. The spectral profiles of EBs and chromospheric microflares are calculated with the non-LTE radiative transfer theory and compared with observations. It is found that the typical features of the two phenomena can be qualitatively reproduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call