Abstract
Many interventional procedures aim at changing soft tissue perfusion or blood flow. One problem at present is that soft tissue perfusion and its changes cannot be assessed in an interventional suite because cone-beam computed tomography is too slow (it takes 4-10s per volume scan). In order to address the problem, we propose a novel method called IPEN for Intra-operative four-dimensional soft tissue PErfusion using a standard x-ray system with No gantry rotation. IPEN uses two input datasets: (a) the contours and locations of three-dimensional regions-of-interest (ROIs) such as arteries and sub-sections of cancerous lesions, and (b) a series of x-ray projection data obtained from an intra-arterial contrast injection to contrast enhancement to wash-out. IPEN then estimates a time-enhancement curve (TEC) for each ROI directly from projections without reconstructing cross-sectional images by maximizing the agreement between synthesized and measured projections with a temporal roughness penalty. When path lengths through ROIs are known for each x-ray beam, the ROI-specific enhancement can be accurately estimated from projections. Computer simulations are performed to assess the performance of the IPEN algorithm. Intra-arterial contrast-enhanced liver scans over 25s were simulated using XCAT phantom version 2.0 with heterogeneous tissue textures and cancerous lesions. The following four sub-studies were performed: (a) The accuracy of the estimated TECs with overlapped lesions was evaluated at various noise (dose) levels with either homogeneous or heterogeneous lesion enhancement patterns; (b) the accuracy of IPEN with inaccurate ROI contours was assessed; (c) we investigated how overlapping ROIs and noise in projections affected the accuracy of the IPEN algorithm; and (d) the accuracy of the perfusion indices was assessed. The TECs estimated by IPEN were sufficiently accurate at a reference dose level with the root-mean-square deviation (RMSD) of 0.0027±0.0001cm-1 or 13±1 Hounsfield unit (mean±standard deviation) for the homogeneous lesion enhancement and 0.0032±0.0005cm-1 for the heterogeneous enhancement (N=20 each). The accuracy was degraded with decreasing doses: The RMSD with homogeneous enhancement was 0.0220±0.0003cm-1 for 20% of the reference dose level. Performing 3×3 pixel averaging on projection data improved the RMSDs to 0.0051±0.0002cm-1 for 20% dose. When the ROI contours were inaccurate, smaller ROI contours resulted in positive biases in TECs, whereas larger ROI contours produced negative biases. The bias remained small, within±0.0070cm-1 , when the Sorenson-Dice coefficients (SDCs) were larger than 0.81. The RMSD of the TEC estimation was strongly associated with the condition of the problem, which can be empirically quantified using the condition number of a matrix that maps a vector of ROI enhancement values to projection data and a weighted variance of projection data: a linear correlation coefficient (R) was 0.794 (P<0.001). The perfusion index values computed from the estimated TECs agreed well with the true values (R≥0.985, P<0.0001). The IPEN algorithm can estimate ROI-specific TECs with high accuracy especially when 3×3 pixel averaging is applied, even when lesion enhancement is heterogeneous, or ROI contours are inaccurate but the SDC is at least 0.81.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.