Abstract
Three-dimensional reduced graphene oxide/montmorillonite nanosheet aerogels (RGMTAs) have been successfully fabricated through hydrothermal method. X-ray diffraction and field-emission scanning electron microscope were used to characterize the structures of RGMTAs, and the electrochemical performance was investigated by electrochemical measurements. The restacking of reduced graphene oxide aerogel can be effectively inhibited without obvious structure change by using a small amount of montmorillonite nanosheets (Mts). The reduced graphene oxide/Mts aerogel shows enhanced electrochemical performance with a high specific capacitance of 275 F g−1 at a current density of 1 A g−1, and excellent rate capability. Moreover, though it is not conductive, excessive Mts only slightly increase the equivalent series resistance and charge transfer resistance. This work demonstrates that 2D Mts can reduce the restacking degree of graphene sheets, and the 3D reduced graphene oxide/Mt. nanosheet aerogel is a potential electrode material for supercapacitor applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have