Abstract
Rationale: The organization of the transverse-tubular (t-t) system and relationship to the sarcoplasmic reticulum (SR) underpins cardiac excitation–contraction coupling. The architecture of the SR, and relationship with the t-ts, is not well characterized at the whole-cell level. Furthermore, little is known regarding changes to SR ultrastructure in heart failure. Objective: The aim of this study was to unravel interspecies differences and commonalities between the relationship of SR and t-t networks within cardiac myocytes, as well as the modifications that occur in heart failure, using a novel high-resolution 3-dimensional (3D) imaging technique. Methods and Results: Using serial block face imaging coupled with scanning electron microscopy and image analysis, we have generated 3D reconstructions of whole cardiomyocytes from sheep and rat left ventricle, revealing that the SR forms a continuous network linking t-ts throughout the cell in both species. In sheep, but not rat, the SR has an intimate relationship with the sarcolemma forming junctional domains. 3D reconstructions also reveal details of the sheep t-t system. Using a model of tachypacing-induced heart failure, we show that there are populations of swollen and collapsed t-ts, patches of SR tangling, and disorder with rearrangement of the mitochondria. Conclusions: We provide the first high-resolution 3D structure of the SR network showing that it forms a cell-wide communication pipeline facilitating Ca 2+ diffusion, buffering, and synchronicity. The distribution of the SR within the cell is related to interspecies differences in excitation–contraction coupling, and we report the first detailed analysis of SR remodeling as a result of heart failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.