Abstract

Three-dimensional (3D) quantitative characterization of defects in superalloys is an important way to promote the ability of material design and service life prediction. In this work, 3D spatial distribution of defects for Inconel 625 superalloy manufactured by laser additive manufacturing (LAM) is carried out deep learning (DL) image identification technology and 3D image reconstruction. Firstly, computer tomography (CT) technology was used to obtain continuous slice images of sample. The U-net DL algorithm was applied to intelligently identify material defects in the continuous slices. On this basis, quantitative identification and analysis of spatial defect positions and typical sizes is achieved by using 3D reconstruction software. Compared with traditional threshold segmentation (TS) techniques, the defect recognition rate has significantly improved from 61.90 ​% to 95.00 ​%. This work provides a promising characterization method for efficient characterizing alloy defects and damage especially during material performance evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.