Abstract

The virtual human plan has been the hot point of recent research. The objective of this study is to explore the possibility of three-dimensional (3D) reconstruction of functional fascicular groups inside short segmental peripheral nerve. A 5 cm length of common peroneal nerve was horizontally sliced at 0.25 mm intervals, and each section was stained with acetycholinesterase histochemical staining. The 2D panorama images were acquired by high-resolution digital camera under 100 x microscope and mosaic software; different functional fascicular groups were distinguished and marked. The topographic database was then matched using image processing software, through the 3D reconstruction achieved using 3D reconstruction software (Amira 3.1). The reconstructed 3D images could be rotated or zoomed in any direction and the intercross and recombination processes of nerve bundles could be observed. Based on the serial histological sections and computer technology, the 3D microstructure of short segmental peripheral nerve functional fascicular groups was reconstructed. These results provide the possibility of 3D reconstruction of long segmental peripheral nerve functional fascicular groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.