Abstract

The pentamode structure is a type of mechanical metamaterial that displays dramatically different bulk and shear modulus responses. In this study, a face-centered cubic (FCC) polymeric microstructure was fabricated by using SU8 negative-type photoresists and multibeam interference exposure. Isotropic plasma etching is used to control the solid-volume fraction; for the first time, we obtained a structure with the minimum solid-volume fraction as low as 15% that still exhibited high structural integrity. Using this method, we reduced the width of atom-to-atom connections by up to 40 nm. We characterize the effect of the connection area on the anisotropy of the mechanical properties using simulations. Nanoindentation measurements were also conducted to evaluate the energy dissipation by varying the connection area. The Young's/shear modulus ratio is 5 times higher for the etched microstructure than that of the bulk SU8 materials. The use of interference lithography may enable the properties of microscale materials to be engineered for various applications, such as MEMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.