Abstract

This paper presents the findings of investigating core-shell multiple quantum well nanowire light-emitting diodes (LEDs). A fully self-consistent three dimensional model that solves Poisson and drift-diffusion equations was employed to investigate the current flow and quantum-confined stark effect. The core-shell nanowire LED showed a weaker droop effect than that of conventional planar LEDs because of a larger active area and stronger recombination in nonpolar quantum wells (QWs). The current spreading effect was examined to determine the carrier distribution at the sidewall of core-shell nanowire LEDs. The results revealed that a larger aspect ratio by increasing the nanowire height could increase the nonpolar-active area volume and reduce the droop effect at the same current density. Making the current spreading length exceed a greater nanowire height is critical for using the enhancement of nonpolar QWs effectively, when an appropriate transparent conducting layer might be necessary. In addition, this paper presents a discussion on the influences of the spacing between each nanowire on corresponding nanowire diameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.