Abstract
Two ultraviolet InGaN/GaN light emitting diodes (LEDs) with and without InGaN underlying layer beneath the multiple quantum wells (MQWs) were grown by metal-organic vapor phase epitaxy. Based on the photoluminescence excitation measurements, it was found that the Stokes shift of the sample with a 10-nm-thick In0.1Ga0.9N underlying layer was about 64 meV, which was smaller than that of the reference sample without InGaN underlying layer, indicating a reduced quantum-confined Stark effect (QCSE) due to the decrease of the piezoelectric polarization field in the MQWs. In addition, by fitting the photon energy dependence of carrier lifetime values, the radiative recombination lifetime of the sample with and without InGaN underlying layer were obtained about 1.22 and 1.58 ns at 10 K, respectively. The shorter carrier lifetime also confirmed that the QCSE in the MQWs was weakened after inserting the InGaN underlying layer. In addition, although the depth of carrier localization in the sample with InGaN underlying layer became smaller, the nonradiative recombination centers (NRCs) inside it decreased, and thus suppressed the nonradiative recombination process significantly according to the electroluminescence measurement results. Compared to the reference sample, the efficiency droop behavior was delayed in the sample with InGaN underlying layer and the droop effect was also effectively alleviated. Therefore, the enhanced light-emission efficiency of ultraviolet InGaN/GaN MQW LEDs could be attributed to the decrease of QCSE and NRCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.