Abstract

Stably stratified flows over a two-dimensional hill are investigated in a channel of finite depth using a three-dimensional direct numerical simulation (DNS). The present study follows onto our previous two-dimensional DNS studies of stably stratified flows over a hill in a channel of finite depth and provides a more realistic simulation of atmospheric flows than our previous studies. A hill with a constant cross-section in the spanwise (y) direction is placed in a 3-D computational domain. As in the previous 2-D simulations, to avoid the effect of the ground boundary layer that develops upstream of the hill, no-slip conditions are imposed only on the hill surface and the surface downstream of the hill; slip conditions are imposed on the surface upstream of the hill. The simulated 3-D flows are discussed by comparing them to the simulated 2-D flows with a focus on the effect of the stable stratification on the non-periodic separation and reattachment of the flow behind the hill. In neutral (K = 0, where K is a non-dimensional stability parameter) and weakly stable (K = 0.8) conditions, 3-D flows over a hill differ clearly from 2-D flows over a hill mainly because of the three-dimensionality of the flow, that is the development of a spanwise flow component in the 3-D flows. In highly stable conditions (K = 1, 1.3), long-wavelength lee waves develop downstream of the hill in both 2-D and 3-D flows, and the behaviors of the 2-D and 3-D flows are similar in the vicinity of the hill. In other words, the spanwise component of the 3-D flows is strongly suppressed in highly stable conditions, and the flow in the vicinity of the hill becomes approximately two-dimensional in the x and z directions.

Highlights

  • The atmospheric boundary layer is often characterized by vertical variations of air density

  • Stratified flows over a two-dimensional hill are investigated in a channel of finite depth using a three-dimensional direct numerical simulation (DNS)

  • The present study follows onto our previous two-dimensional DNS studies of stably stratified flows over a hill in a channel of finite depth and provides a more realistic simulation of atmospheric flows than our previous studies

Read more

Summary

Introduction

The atmospheric boundary layer is often characterized by vertical variations of air density. In highly stable conditions (K = 1, 1.3), long-wavelength lee waves develop downstream of the hill in both 2-D and 3-D flows, and the behaviors of the 2-D and 3-D flows are similar in the vicinity of the hill.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call