Abstract
PurposeThe purpose of this paper is to bring up the concept of multi‐material electromagnetic band‐gap structure (EBGs) and develop a method for its fabrication. Meanwhile, its microwave properties were studied and compared with the traditional EBGs consisting of two kinds of material.Design/methodology/approachStereolithography (SL) and gel casting were used to fabricate 3D multi‐material EBGs. Resin mold was designed and fabricated based on SL process, slurries loaded with 55vol per cent Al2O3 and 55vol per cent TiO2, respectively, were prepared, and using gel casting, multilayer EBGs with diamond structure were fabricated. T/R method was used to obtain the characteristic parameter S21 of the EBGs; meanwhile, characters of their band structure were studied based on plane wave expansion method.FindingsThe fabricated EBGs with a TiO2‐resin‐air structure showed a band gap from 11.7 GHz to 16.0 GHz along <1, 1, 0> direction; the EBGs with a TiO2‐resin‐Al2O3 structure showed a band gap from 11.4 GHz to 11.9 GHz along <1, 1, 0> direction. Both of them agreed well with the simulation result. Also, through the study of multi‐material EBGs' microwave properties, it could be seen that this structure was a good approach to adjust the band gap.Originality/valueWith the concept of multi‐material EBG structure brought up, multilayer 3D EBGs were designed and fabricated based on SL combined with gel casting. It could be seen that multi‐material EBGs was a good approach to adjust the band gap. Also, the fact that the testing result matched the simulation validates the feasibility of the process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.