Abstract

Numerous human thermoregulatory models have been developed and widely used in various applications such as aerospace, medicine, public health, and physiology research. This paper is a review of three dimensional (3D) models for human thermoregulation. This review begins with a short introduction of thermoregulatory model development followed by key principles for mathematical description of human thermoregulation systems. Different representations of 3D human bodies are discussed with respect to their detail and prediction capability. The human body was divided into fifteen layered cylinders in early 3D models (cylinder model). Recent 3D models have utilized medical image datasets to develop geometrically correct human models (realistic geometry model). The finite element method is mostly used to solve the governing equations and get numerical solutions. The realistic geometry models provide a high degree of anatomical realism and predict whole-body thermoregulatory responses at high resolution and at organ and tissue levels. Thus, 3D models extend to a wide range of applications where temperature distribution is critical, such as hypothermia/hyperthermia therapy and physiology research. The development of thermoregulatory models will continue with the growth in computational power, advancement in numerical methods and simulation software, advances in modern imaging techniques, and progress in the basic science of thermal physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.